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The WKB approximation to the scattering problem is developed without the 
divergences which usually appear at the classical turning points. A detailed 
procedure of complexification is shown to generate results identical to the usual 
WKB prescription, but without the cumbersome connection formulas. 

1. I N T R O D U C T I O N  

In general an exact solution for many quantum mechanical problems is 
unachievable and one is forced to resort to some type of approximate tech- 
nique. One of the most useful of those methods is the semiclassical or 
Wentzel-Kramers-Brillouin (WKB) approach. The major shortcoming of 
the semiclassical WKB approximation of solving the wave equation is its 
divergence at the classical turning points. Available regularization schemes 
are accurate, but rather complicated. Although these methods sharpen the 
threshold effects, nevertheless exact solutions to the stationary wave equation 

d2O + k2(x)d/ = 0 (1) 
dx 2 

(with the local wavenumber k2(x) = 2m[E - V (x)]lh z) cannot be found in 
most problems which involve a one-dimensional potential V(x)  (Eisenhart, 
1934). In the WKB approach, the wave function O(x) is supposed to be 
represented by 

~(x) = Ae i~x)/n (2) 
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which converts the linear, time-independent Schr6dinger equation for O(x) 
into the nonlinear Riccati equation for the function tr(x), 

- i h - - ~  = 2 m [ E  - V(x)]. (3) 

The WKB approximation consists in expanding ~ as a power series in h: 

�9 �9 �9 

and substituting this expression in the relative differential equation, whose 
coefficients can be generated recursively (Dunham, 1932). The following 
conditions can then be obtained: 

(~o~x~ (~l~X~ + l____~__(~o~x)~ ~) 
\ dx ] \  dx ] 2 \  dx~ ] = 0  

whose solutions are given by 

I x 
tro(X) = +- p ( x ' )  dx '  (6) 

xO 

try(x) = 1 o"~(x____~) _ I p'(x____)) =~ trl(x) = - In x /p (x )  
2 o-~(x) 2 p ( x )  

where the prime denotes differentiation with respect to x, and Xo is an arbitrary 
point. The leading connection term oq(x) diverges at the classical turning 
points x~ ~ where V(x~c i)) = E, which makes the first-order WKB solution 

0(x) ~- ~ C+ exp ~ xo p(x ' )  dx '  

+ C_ exp - ~  p (x ' )  dx '  (7) 
x0 

divergent at these points. In the classical limit, this divergence is understand- 
able, since a classical particle has zero velocity at these turning points. This 
divergence at the turning points is a severe limitation on the usefulness of 
the WKB approximation for quantum mechanics, since there is no divergence 
in the exact wave function. However, away from the turning points, the 
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WKB solution gives a good description of wave functions, especially in the 
semiclassical limit of large quantum numbers n. Far from the turning points, 
the behavior of the semiclassical solution 

l (c+exp( io  ~ ~b(x) = ~ f k(x')dx') 

+ C- exp(-i I~ k(x') dx')) (8) 

changes drastically in accord with the wavenumber 

1 1 x/2m[E_ V(x)]. k (x) = ~ p (x) = (9) 

An oscillatory behavior is produced by the solution corresponding to the 
classically allowed region E > Vma~ (x), where k(x) is real: 

A dx' ~(x) = ~ sin k(x') + 
x 0  

(10) 

whereas in the classically forbidden region E < V,,i~(x), where the wavenum- 
ber k (x) = if3(x) with 

1 x/2m[V(x ) _ E] > 0 f3(x) = -g (11) 

becomes purely imaginary, the general semiclassical solution is exponen- 
tially decreasing: 

,{ C[  x ) 
t~(x) = ~ C+ exp - 13(x') dx' 

\ a X0 

x )) 
+ C- exp ~(x') dr' . 

\ - , x  0 

(12) 

This semiclassical behavior is valid only asymptotically. The regions near 
the turning points should be treated separately. This leads to the fragmentation 
of the x axis into several regions with connection formulas for going through 
the turning points. Such a patchwork for the semiclassical wave functions 
leads to the familiar lowest order WKB energy quantization condition 
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i) 

or to more complicated conditions if higher orders corrections in h are kept 
(Barclay, 1993). On the other hand, continuous connection formulas giving 
finite wave functions also at the turning points have also been developed in 
the realm of uniform approximation (Berry, 1972; Voros, 1976; Robicheaux 
et al., 1987). In the next section we recover the connection formulas of the 
usual WKB procedure; in Section 3 we establish that this prescription can 
be generalized with a reformulation based on the analytic continuation into 
the complex momentum variable and contour integrations. 

2. SEMICLASSICAL APPROACH TO BARRIER PENETRATION 

In the case of scattering problems, there are two independent solutions 
which are usually called incoming and outgoing waves, respectively. These 
waves become free-particle waves in the asymptotic region. Classically a 
particle [incident from the left with energy E < Vine(x)] is completely reflected 
from the potential region at the (left-hand) classical turning point a, defined by 

V(a)  = E. (14) 

However, quantum mechanically the particle can "tunnel" through the barrier 
and find itself on the right-hand side. In the case of ordinary barrier penetration 
V~n < E < Vm~x there exist two classical turning points on the real axis 
x~ l) = a < x~ 2) = b. The WKB approximation is valid where transmission 
dominates over reflection and, in the semiclassical limit, the probability of 
tunneling is given by T = e -z'~*, where 

Ii Ill tr . = ~(x)  dx  = ~ x /2m[V(x)  - E] dx  (15) 

and the probability of being reflected is correspondingly reduced from its 
classical value of unity to R = 1 - Z The problem of the breakdown of the 
WKB solution near the turning points can be overcome with the usual proce- 
dure to consider the linear approximation of the potential 

V(x)  = V(a)  + ~ ( x  - a)  (16) 

with 

and 

(17) 

p ( x )  = x /2mlx(x  - a). (18) 
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Thus, the connection formulas which relate oscillatory and exponential behav- 
ior of the wave function forms on the opposite sides of a classical turning 
point can be matched by considering the differential equation 

- z ~ ( z )  = 0 (19 )  

once we set z = (2ml.dh 2)1/3(x - a). The complex method for treating classical 
turning points provides a powerful description to the "connection problem" 
by using the exact solution of the Schr6dinger equation 

1 l .x .  w x0 x. ) 

where 

I 
x 

W(Xo, x) = p(x') dx'. (21) 
x o  

The usual WKB method, by its very nature, cannot take into systematic 
account the modifying effects of the multiply reflections between the classical 
turning points. Even if the values of the WKB multipliers C+_(x) are known 
on a given wide region, the complex method, while providing useful informa- 
tion about the solutions, is inefficient to give all the details of the wave 
function in the neighborhood of the turning points. A powerful technique to 
overcome this deficiency consists in deriving the asymptotic solutions of the 
differential Airy equation (19) calculated in the stationary phase approxima- 
tion. Its solution can be represented by the Laplace integral 

~(x) = A f c  e2t-t313 dt (22) 

where the curve C is taken so that the integrand vanishes at the limit of 
integration. Since the integrand vanishes exponentially in the interval 

larg tl < "tr/6 (23) 

"tr/2 < arg t < ~'a" (24) 

7"rr < arg t < -~r (25) 

the curves C~, C2, Ca are all allowed and yield three different solutions, and 
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two each are independent. The integration along imaginary axis C~ yields 
the so-called Airy function 

1 fc exp(z, ~)dt l l o =  ( ~ )  . . . .  cos zt + dt (26) Ai(z) ~ l ar 

whereas the integration along a complementary curve C2 yields a further 
independent solution 

Bi(z)=lfc2eXp(zt-~)dt=Jo=Sin(zt+~)dt (27) 

whose well-known asymptotic behaviors are given by 

Ai(z) 2~z N exp - ~  z 3/2 (28) 

Ai(-z) ~z u4 sin g + . (29) 

Similarly in the case of Bi(z) we have 

Bi(z) - ~ exp g z m (30) 

1 
B i ( - z )  ~ ~ c o s ~  Z + (31) 

These two Airy functions are independent solutions of (19). If we introduce 
the variable 

2 _x3/2 "r = ~ (-~) (32) 

and make the transformation 

O(z) = (-z)V2~b('r) (33) 

then (19) takes the Bessel form 

~ + "r-~- + "r 2 - d0(x) = 0 (34) 

which let us represent Airy functions in terms of the following Bessel 
functions: 
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Ai(z)=-~(I-~/3(2za/2)-I~/3(2z3/2)} (35) 

2 2 3/2 
Bi(z) = ~/~ {I-1,3(-~ z312) + ll13(3 z )1" (36) 

The formal connection formulas can be established by the analytic features 
of the potential barriers near a classical turning point to match approximate 
solutions across the boundaries. The derivation and application of the connec- 
tion formulas are both nontrivial and fraught with pitfalls associated with the 
existence of exponentially large and exponentially small components of the 
wave function, in the classically forbidden region. However, in spite of these 
difficulties, in the case z > 0 (dVIdx > 0) we have the local wavenumber 
in the forbidden region 

1 x/2mlx(x _ a) (37) 1 ~/2m[V(x) - E] f~Cx) = ~ = 

so that 

flf~(x') dx' 2 z3/2" =3 

Similarly for z < 0 we have in the allowed region 

k(x) = ~1 ~/2m[E - V(x)] = hl x/_2m~(x _ a) 

and 

(38) 

(39) 

I a k ( x ' )  dx  t 2 = ~ ( - z )  3/2. (40) 
x 

Finally, since sin(do + ~r/4) = cos(do - ~r/4), we can derive the following 
matching expression 

2 cos(f~k(x')dx'- 1 x 

Since cos (d O + 9/4) = - s i n  (do - 9/4), we find 

1 ( I  a dr '  4) 1 (Ia ~ ) k v ~  sin k(x') - ~ . (42) x ~ exp 13(x') dx' 
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The connection relations for the case of a decreasing potential ( d V / d x  < O) 

are given analogously 

- ~ ( x ' ) ~ x '  ~ -  c o s ( f  d r ,  - (43) 
. .x 4 k ( x )  \Ja 

and 

exp  ~ (x ' )  d r '  ~ d r '  - sin k ( x ' )  . (44)  

With these connection formulas, it is straightforward to determine the trans- 
mission coefficient T with the knowledge of the semiclassical wave function 

1 
O(x) = ~ (C+e i'~* + C - e  -i'~') (45) 

4 k ( x )  

and its asymptotic limit 

ft~lin(X) for x < <  a 
O(x) - ~ [Omo~t(x) for b < <  x 

(46) 

in the region to the far left and right of the barrier, which are given by 

[ ( I f )  (I; 4) O~i.(x) = kv/-k- ~ e x p .  13(x) dx sin k ( x ' )  dx '  - 

((2)(f; 4)] + 4i exp 8(x) dr sin k ( x ' )  dr '  + (47) 

and 

2B dr,  . ar ~mout(x) = ~ exp i k (x ' )  - t (48) 

let us make an immediate determination of the transmission coefficient Z 
This probability of tunneling is defined by means of the ratio between the 
probability current density 

j = R e  ~m ~mm ** - ~ (49) 

of the transmitted and the incident waves: 

T = Jill (50) 
j l  
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where 

I jln = 41BI2 ~ 1 e_0.,)2 _ (e0.. 1 2 m 
[ji=41BI2[(eo-*+'~ - ~e-0.*) ] fi-- 

(51) 

with 

fl ill tr. = fS(x) dx = ~ x/2m[V(x) - E] dr. (52) 

Thus the WKB techniques show that in the semiclassical limit, the probability 
of tunneling is given by 

T Jm e -20.* 
- - --~ e - 2 0 . .  ( 5 3 )  

j l  (1 -1"- ~el -2o-.)2 

which is valid under the assumption that exp(-2tr,) < <  1. Therefore the 
probability of being reflected is correspondingly reduced to R = 1 - T. 

3. EFFECTIVE SEMICLASSICAL APPROXIMATION TO 
B A R R I E R  PENETRATION 

In the complex method we previously analyzed, no attempt is made to 
clarify the contributions of the multipliers C_+ (x) which indeed are x-dependent 
and associated with the modifying effects of the possibility of internal reflec- 
tions inside the barrier, in the sense that the particle can travel from turning 
point a to turning b in several n number of ways. A systematic account of 
multiply reflected contributions in the limit of a continuous potential is 
associated with the following coupled first-order equations: 

C" (x) = tr~(x)C~_(x) exp(-T- h W(Xo, x)) (54) 

where the prime refers to the derivative with respect to x (FrSman and Fr0man, 
1965). These coupled equations are formally equivalent to the SchrSdinger 
equation (1). Different solutions of Schr6dinger equation are obtained by 
applying different conditions to C,(x). In particular, imposing that there is 
no reflected wave far beyond the potential barrier and assuming that the 
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incident wave has unit intensity, we obtain the scattering solution, after a 
trivial change of normalization, 

I 2i X')] 

t~ (x, = _f+x ~ ~,  ~x,,c+(x,~ ~x~[+~ w(xo, ~,,] (~, 
Wherever the differential reflection coefficient 

r(x)  = -cry(x) - p ' (x )  (56) 
2p(x) 

may be set equal to zero, we obtain a constant value for the C+_(x), as 
mentioned above. Therefore, the precise value of the reflection coefficient 
may be found with the help of successive integration by parts 

R = - dx r(x)C+(x) exp + ~  W(Xo, x) 

exp[-~w(x0,x,)]}exp[~w(~,x)] (~) 

In this case, however, the main contributions to the integral cannot be selected 
easily because they depend on the analytic properties of the function p(x)  
and, in the last view, on the type of the singularities of the potential. In fact, 
the SchrOdinger equation (1) takes the form 

d2~b(w) + [ 1 ] 
dw: ~5 + IT'(w) d~(w) = 0 (58) 

where we change the variable to the phase w of the exponent in (54) and 
make the transformation 

d~(x) = ~/P-~(h x) d~(x) (59) 

with I7' determined by p through the relation 
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Q, = 3(p') 2 -- 2pp"_ t r l ' _ _ +  tr~ 2 _ __2 o'~. (60) 
4p 4 tr~ 2 p(x) 

Here the prime denotes differentiation with respect to x. Nevertheless, we 
may stress that the most important quantity yields the phase w of the exponent. 
The subtleties involved in the evaluation of the precise value of the reflection 
coefficient stem from the convergent expansion of the total wave amplitude, 
which can be given in momentum space as 

~(ko, k) = ~(ko, k) + f dk' Go(ko, k')fZ(ko, k')~(ko, k') 

+ I dk" [ f  dk' Go(ko, k)~'(ko, k')do(k', k")fZ(k', id'),(k', k")] 

+ ... (61) 

where ~ represents the free wave solution and 

= h 2 1 
Go(k) ~-~ [1 _-~hk)2] (62) 

is its relative propagator. Both ~bo and G0 are obtained, assuming that the 
perturbation I7 vanishes in (58). Using these asymptotic solutions, we derive 
that the exact solution of reflection coefficient is perturbatively given by 

R = ~(ki, ky) + f dkl e(ki, kOGo(kO~(kl, kl) 

-~ f f dkl dk 2 [v(ki, kl)Go(kl)V(kl, k2)*o(k2)v(k2, kf)] -~ "~176 (63) 

where ~7(k, k') are the matrix elements of the perturbation I7' in (58), 

k') = I d~$*(k)fZ(w (O)ff#(k') 

= I +~176 e U~<k'-k)r ~'(w ( 0 )  d~. (64) 
3-o~ 

Such results would need to take account of all the singularities of the perturba- 
tion I7" and indeed ofp (x). Thus, any value of R will not in general be single- 
valued because of the branch points at the real turning points X~c i) where 
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p (x (i)) = 0,  unless we adopt the convention of  dividing the complex Gauss 
plane into two Riemann sheets as shown in Fig. I. 

4. C O N C L U D I N G  R E M A R K S  

The propagator (Green's function) technique in the solution of  problems 
in nonrelativistic quantum mechanics becomes relevant in calculating explic- 
itly the reflection coefficient in the case of  barrier scattering represented by 
an analytic function V(x). In the case of  ordinary barrier penetration E < 
Vma~, the k(x) defined in (9) is in general two-sheeted, with two branch 
turning points xc(~), x~ 2) located on the real axis and we may choose the 
defining branch cut to connect them (Fig. 1). An alternative approach to the 
semiclassical approximation allows a very appealing picture of the transmis- 
sion coefficient and generates results identical to the usual WKB prescription, 
but without the cumbersome connection formulas. This method consists in 
the analytic continuation into the complex momentum variable and contour 

Vm~ 

4" ,r x 

x / 
Fig. 1 A typical potential barrier, with classical turning points x~ I) = a, x~ 2) = b, and the two 
Riemann sheets of the function k (x) with an analytic potential function at any incident energy 
(E < Vmax). In the case of ordinary barrier scattering, the contours which define the reflection 
coefficient must sweep through the associated branch cuts (in the complex plane) which connect 
the two turning points. The contours looping around the two conjugate branch points, where 
the fixed energy Green's function (the propagator) becomes singular, give the next to the 
leading order contributions and lie outside the usual semiclassical approximation. 
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integrations, wherein it is permitted. Such a complex variable method is 
extensively adopted in modem theoretical physics to clarify the concepts of 
analyticity in S-matrix theory. Its results are particularly suitable for discussing 
the problem of one-dimensional barrier penetration if we reconsider that the 
genetic propagation from Xin to xfi, far to the left and tight of the barrier, 
respectively, in opposite sides can be considered as occurring in three succes- 
sive steps according to the decomposition of the integral 

(I I ) grin k (x )  dx = k(x) dx + if3(x) dx + k(x) dx . (65) 
- ~ n  n a d b  

The complexification of the problem generates a more intuitive picture of the 
physics of the process and offers an alternative technique to avoid singularities 
which occur in the standard WKB approach. The propagator can be then 
expressed in terms of contour integrals which connects the initial and final 
points Xin, Xnn, both of which are located on the real axis far to the left of 
the barrier. Furthermore, we assert that if the incident wave is initially located 
at xi, far to the left of the barrier, then the reflected wave is given by the 
analytic continuation of the functions involved, evaluated on the other side 
of the cut. It is important to note that they are on different sheets, so that 
any independent contour of integration has to pass through the cut. Of course, 
the singularities of the function 17' in the complex plane may involve other 
branch points, but we may discard them here. Anyway, the singularities of 
17' are related to the singularities of the function p (x). Clearly, the multiple 
integrals resulting in (63) correspond to the effect of multiple reflections. 
The contributions of the only once-reflected waves to the reflection coefficient 
are given by 

R = - I  +~ dx r(x)e 2iw(xo'x)l t i .  (66) 
J_~ 

Actually, one could include also contributions from contours which loop the 
branch cut several times. These higher order terms are, in general, unreliable, 
although they are expected to be exponentially much smaller than the poly- 
nomial corrections which lie outside the usual semiclassical WKB 
approximation. 
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